If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-k^2-16k+84=0
We add all the numbers together, and all the variables
-1k^2-16k+84=0
a = -1; b = -16; c = +84;
Δ = b2-4ac
Δ = -162-4·(-1)·84
Δ = 592
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{592}=\sqrt{16*37}=\sqrt{16}*\sqrt{37}=4\sqrt{37}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-4\sqrt{37}}{2*-1}=\frac{16-4\sqrt{37}}{-2} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+4\sqrt{37}}{2*-1}=\frac{16+4\sqrt{37}}{-2} $
| 4(3x+1.5)=18-x | | w+124=325 | | 8x-4x+132=8x+56 | | 2x+3/x+1=3/2 | | u/2+15=15 | | 6m=–48 | | 7y-69=8y-83 | | 3p+28=10p | | n/4-3=n/12+10 | | 3b=9b-42 | | 3c-59=2c | | 3+–3c=9 | | 36=m-921 | | s+36=61 | | 2c=3c-59 | | 7=y-42 | | 2x-27=16 | | y+5=26 | | u/28=9 | | 3x+7x=4x-18 | | 31=z-16 | | y-49=83 | | r-190=526 | | q-7=62 | | 49=n-16 | | g+7=965 | | (x+4)=^2+8x-16 | | 9=c/29 | | 30=z-35 | | c-571=122 | | 4+k/2=12 | | s+14=59 |